Trims and extensions of quadratic APN functions

نویسندگان

چکیده

Abstract In this work, we study functions that can be obtained by restricting a vectorial Boolean function $$F :\mathbb {F}_{2}^n \rightarrow \mathbb {F}_{2}^n$$ F:F2n→F2n to an affine hyperplane of dimension $$n-1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">n-1 and then projecting the output -dimensional space. We show multiset $$2 \cdot (2^n-1)^2$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">2·(2n-1)2 EA-equivalence classes such restrictions defines EA-invariant for on $$\mathbb xmlns:mml="http://www.w3.org/1998/Math/MathML">F2n . Further, all known quadratic APN in $$n < 10$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">n<10 , determine are also APN. Moreover, construct 6368 new eight up extending seven. A special focus work is with maximum linearity. particular, characterize linearity $$2^{n-1}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">2n-1 property ortho-derivative its restriction linear hyperplane. Using fact seven classified, able obtain classification 8-bit $$2^7$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">27 EA-equivalence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalences of quadratic APN functions

The following conjecture due to Y. Edel is affirmatively solved: two quadratic APN (almost perfect nonlinear) functions are CCZ-equivalent if and only if they are extended affine equivalent.

متن کامل

Isomorphisms and Automorphisms of Extensions of Bilinear Dimensional Dual Hyperovals and Quadratic APN Functions

In [5] an extension construction of (n+1)-dimensional dual hyperovals using n-dimensional bilinear dual hyperovals was introduced. Related to this construction, is a construction of APN functions in dimension n+ 1 using two APN functions in dimension n. In this paper we show that the isomorphism problem for the (n + 1)-dimensional extensions can be reduced to the isomorphism problem of the init...

متن کامل

On the equivalence of quadratic APN functions

Establishing the CCZ-equivalence of a pair of APN functions is generally quite difficult. In some cases, when seeking to show that a putative new infinite family of APN functions is CCZ inequivalent to an already known family, we rely on computer calculation for small values of n. In this paper we present a method to prove the inequivalence of quadratic APN functions with the Gold functions. Ou...

متن کامل

Quadratic Equations from APN Power Functions

We develop several tools to derive quadratic equations from algebraic S-boxes and to prove their linear independence. By applying them to all known almost perfect nonlinear (APN) power functions and the inverse function, we can estimate the resistance against algebraic attacks. As a result, we can show that APN functions have different resistance against algebraic attacks, and especially S-boxe...

متن کامل

Quadratic Binomial APN Functions and Absolutely Irreducible Polynomials

We show that many quadratic binomial functions of the form cx i +2 j + dx u +2 v (c, d ∈ GF (2m)) are not APN infinitely often. This is of interest in the light of recent discoveries of new families of quadratic binomial APN functions. The proof uses the Weil bound from algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2022

ISSN: ['0925-1022', '1573-7586']

DOI: https://doi.org/10.1007/s10623-022-01024-4